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BY 
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1. Introduction - The study of large scale ocean flows has tradi- 

tionally been a subject where perturbation techniques have played a 

central role [l]. 

layers ([21,[3]),the Gulf Stream being the most striking example. 

a great deal has been leanned with these analyticalmethods, still un- 

resolved and as a consequence of central importance in geophysical fluid 

mechanics, is the dynamics of ocean flows. 

The reason is that such flows are rich in boundary 

While 

This is especially true for 

the medium or meso-scales. 

Thus for example a rather eloquent theory has been developed with 

singular perturbation expansions which explains why there is a westward 

intensification of ocean currents in the Atlantic; that is, a Gulf Stream 

[ 21. Undetected by this theory, however, is the so-called meandering of 

the Gulf Stream. The latter is a meeo-scale phenomena, highly nonlinear, 

and time dependent, which is felt to have important consequences on the 

global circulation [ 4 I .  
Another example of a meso-scale flow whose dynamics is not understood 

is the mid-ocean eddies. 

apparently transport a significant amount of energy. 

are essentially nonlinear in character and as a consequence have eluded 

These are f e l t  to be quite important since they 

Unfortunately they 

1 
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exact analysis . 
In the last few years there has been increasing interest in using 

numerical methods to study meso-scale dynamics 151. 

many "world ocean'' or global circulation models in existence (*), and 

while these have made a significant contribution to oceanography they 

can not be expected to resolve meso-scale effects on the present genera- 

tion of computers. 

region models. This activity has received a f'undamental stimulus from 

the M.O.D.E. project (mid-ocean dynamics experiment) [63, and in fact, 

these experiments were primarily designed to be a data base for numerical 

models. 

There are  of course 

As a consequence, attention is being given to limited 

In this paper we describe one such model based on the finite 

element method. The latter can at best be said to be untested as regards 

fluid calculations, although there have been some preliminary studies ( [ 81, 

[ 9 ] ,  [lo]. [ll]). We do not wish to confront in this paper the rather 

controversial question of finite elements vs. finite differences in the 

context of computational fluid dynamics. Indeed, it may very well turn 

out t h a t  finite elements will play only a very small role in the latter. 

Whrit. l'inftc eLcmonta does bring to flow problems, on the other hand, 

i :; t~ systematic procedure for developing stable higher order approximations 

(*)See the articles by K. Bryan and M. Cox in [5]. 



3 

even i n  t h e  presence of i r r egu la r  g r i d s  and geometries. 

of c r u c i a l  importance i n  the  l imi ted  region model. 

f l e x i b i l i t y  i n  choosing boundaries ( t o  coincide f o r  example with a 

streamline i n  the M.O.D.E. data), and i r regular  g r i d s  a r e  e s s e n t i a l  s ince  

meso-scale eddies w i l l  t yp ica l ly  occupy a small p a r t  of t he  M.O.D.E. 

region. 

t i a l l y  i n  time, and as w e  shall show i n  the sequel,  f i n i t e  elements 

t r e a t  t h i s  i n  a n a t u r a l  and s t ab le  manner. 

The la t ter  are 

Indeed, one wants the 

Moreover, t he  inflow and outflow regions chsnge qu i t e  substan- 

It has been argued [12] t h a t  the s t a b i l i t y  and r e l i a b i l i t y  of t he  

f i n i t e  element method comes at the  pr ice  of e f f ic iency .  

problem t h e r e  a r e  always difference schemes with equivalent accuracy but 

requir ing l e s s  work than f i n i t e  elements. 

convincing f o r  regular  g r i d s  and geometries, but much less 80 f o r  t he  

s e t t i n g  described above. 

described i n  t h i s  paper where s c i e n t i f i c  understanding of physical  

phenomena i s  the  primary goal ,  a premium i s  na tu ra l ly  placed on 

r e l i a b i l i t y  . 

For a given 

We f i n d  t h i s  argument r a t h e r  

I n  addi t ion,  fo r  problems such as t h e  one 

In th l r j  paper we s h a l l  discusn only a two dimensional bs ro t roplc  

model [14], although the ca lcu la t ions  with the  M.O.D.E. data w i l l  be 

done w i t h  a th ree  dimensional quasi-geostrophic model [ 131. 

f o r  t h i s  

concisely and ye t  con ta insa l l  t he  s ign i f icant  non l inea r i t i e s  of t h e  

t h r e e  dimensional model. 

s t r u c t u r e ,  and is  i n  essence (L system of barotropic  models. 

The rea80nn 

that the  barotropic  model can be defined simply and 

I n  f a c t ,  the l a t t e r  has a s t r a t i f i e d  v e r t i c a l  
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2. The l imi ted  region barotropic  model. L e t  52 be a region i n  

t h e  ocean having the  boundary r (see Figure 2.1) .  I n  keeping with 

standard notat ion we l e t  y > 0 be t h e  northward d i r ec t ion  and x > 0 

be eastward. The physical var iab les  of i n t e r e s t  a r e  t h e  x and y 

3 

I 
Figure 2.1.- The region 2. 

components u ,  v of t h e  ve loc i ty ,  t h e  pressure p, and t h e  dens i ty  p. 

Let t ing  f = c1 + By denote t h e  Cor io l i s  parameter t h e  c l a s s i c a l  baro- 

t r o p i c  equations of motion are 

a a + lJ - + v -)u - f v  = - 1.k. a 
(at ax a Y  P ax 

a -)v a + f u  = - L & ,  
P a Y  a Y  

( & + u - + v  
ax 

a a 
ax a Y  

u + - v = o .  - 

In  the study of meso-scale eddies associated with oceanic f l o w  

t h e  most important physical  quant i ty  i s  t h e  po ten t i a l  v o r t i c i t y  5 ,  

which i n  our bar t ropic  model i s  defined as 



C 

The first term i n  t h e  brackets i s  the c l a s s i c a l  v o r t i c i t y ,  and t h e  second 

t e r m  represents  t h e  contr ibut ion from the  E a r t h ' ~  ro t a t ion .  

The equation describing t h e  t ransport  of v o r t i c i t y  is obtained by 

tak ing  t h e  c u r l  of t h e  momentum equations (2.1)-(2.2) .  This gives 

(2.5) a a ( a+ u - + v -  )c  = 0. a t  ax aY 

Because t h e  flow i s  incompressible, there  i s  as t reamfunct ion  J, s a t i s f y i n g  

( 2 . 6 )  

It follows from (2.4)  and (2.6) that t h e  streem funct ion and t h e  po ten t i a l  

v o r t i c i t y  are r e l a t e d  through t h e  e l l i p t i c  equation 

W e  s h a l l  use (2.5) and (2.7) as our basic equations of motion. 

The region J i s  not t h e  world ocean but r a the r  a smaller subset 

determined by t h e  loca t ion  of t h e  M.O.D.E. experiments. As a consequence 

r i G  not a physical boundary i n  t h e  usual sense but r a the r  a curve in a 

IrLrgor oceanic body. This means that  our boundary condition w i l l  be 

s l i g h t l y  d i f f e ren t  from t h e  usual ones t h a t  occur i n  f l u i d  dynamics. 

I n  p a r t i c u l a r ,  we observe t h a t  a t  each time t > 0 w e  must solve 

(2.7) f o r  t h e  stream function J, i n  terms of t h e  po ten t i a l  v o r t i c i t y  

can do t h i s  once t h e  f low normal t o  r is spec i f ied .  Indeed, it follows from 

(2 .6)  t ha t  t h e  ve loc i ty  normal t o  r is  prec ise ly  t h e  t angen t i a l  de r iva t ive  

of t h e  stream funct ion,  denoted in  t h e  sequel (see Figure 2.2). Hence 

5 .  W e  

3U 
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t h e  spec i f  i c a t i o n  

uniquely determines the  ve loc i ty  normal t o  r ,  and a t  t h e  same time allows 

us t o  solve ( 2 . 7 )  f o r  $ i n  terms of 5 .  

The condition (2 .8 )  by i t s e l f  i s  not s u f f i c i e n t  t o  uniquely deter-  

mine t h e  ve loc i ty  f i e l d .  

w r i t t e n  

To see t h i s  l e t  us note t h a t  (2.5) can be 

D 
D t  - ( 5 )  = 0, (2 .5 '  

D 
D t  where - l i e  t h e  mater ia l  time de r iva t ive  

- = -  a -; a a + u - + v  
D t  a t  aY ax 

i . e . ,  t h e  de r iva t ive  w i t h  respec t  t o  t i m e  following a f ixed  p a r t i c l e  i n  

space. The r e l a t i o n  ( 2 . 5 ' )  states t h a t  t h e  p o t e n t i a l  v o r t i c i t y  5 i s  

conserved along p a r t i c l e  path; i . e . ,  once a f l u i d  p a r t i c l e  e n t e r s  n i t s  

po ten t i a l  v o r t i c i t y  is f ixed  and remains t h e  same u n t i l  it leaves  4 2 .  

T h i s  suggests t h a t  t h e  r i g h t  condition on t h e  v o r t i c i t y  i s  t o  spec i fy  i t s  

values on t h e  inflow. The la t ter  i s  defined as those  po in t s  on r where 

t h e  normal ve loc i ty  i s  negative,  o r  what i s  t h e  same 

Our condition i s  thus  



(2.10) 

Figure 2.2. - Inflow region. 

A more fundamental ca l cu la t ion  jue t i fy ing  t h e  boundary condition 

(2.10) starts w i t h  

(2 .11)  

which i n  t h e  geophysical f l u i d  dynamics l i terature i s  often c a l l e d  t h e  

p o t e n t i a l  entrosphy. Mathematically, it i s  of course nothing more than  

t h e  s p a t i a l  L2 norm of t h e  p o t e n t i a l  v o r t i c i t y  at each t i m e  t > 0. 

t h e  sequel we s h a l l  r e t a i n  t h e  notation implied i n  (2.11) with 

I n  - 

denoting t h e  Le norm of g ,  and more genera l ly  

denoting t h e  Sobolev norm of in t eg ra l  order r > 0. - 

, 
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To bound t h e  entrosphy we rewrite (2.5)  as 

(2.12) % =  J(s ,  $1, 

where 

(2.13) - av aw av aw 
ax ay ay ax J(v,  W )  - -- - -0 . 

Multiplying (2.12) by 5 and in t eg ra t ing  over 52 gives 

(2.14) 

i . e . ,  the  time growth of t h e  po ten t i a l  entrosphy i s  governed by t h e  

values of t h e  volume i n t e g r a l  

The key s tep  i n  t h i s  ca l cu la t ion  i s  t o  s implify t h i s  expression by 

converting i t  i n t o  a boundary i n t e g r a l  over r. We observe t h a t  

Hence an in tegra t ion  by p a r t s  gives  

r 

(2.15) 

which i s  the concise form of t h e  l a w  governing t h e  t i m e  growth of en- 

trosphy. There are a couple of i n t e r e s t i n g  features about t h i s  l a w  



t h a t  a r e  worthy of note. F i r s t  t h e  boundary i n t e g r a l  can be broken i n t o  

t w o  p a r t s ,  one over t h e  inflow region r ( t )  and t h e  o ther  over t h e  out- i n  

flow: 

r ( t i  = r - r in ( t ) .  out 

On t h e  l a t t e r  $ 2 0 ( s e e  (2.9)) ;  hence t h e  cont r ibu t ion  t o  (2.15) from 

t h e  outflow i s  non-negative, i .e .  , 

From t h i s  w e  see t h a t  t h e  t i m e  growth of t he  p o t e n t i a l  entrosphy i s  bounded 

by t h e  i n i t i a l  data, which we t ake  as 

and t h e  boundary da ta  on t h e  inflow. 

f o r  (2.3.0). 

Th i s  i n  essense i s  t h e  r a i son  d 'e t re  

'l'tw f i r l i i r L I . 1  Ly (;'.J,6) 113 q u i t e  ccntrul  to the e n t l r c  problem, and play8 

IL role sitrii1a.r to t h e  coerciveneaa inequal i ty  for  elliptic equationa. In 

f a c t ,  using t h e  techniques of [16] , uniqueness and continuous dependence 

on data can be r ead i ly  developed from (2.16) ,  and i n  Sect ion 3 we s h a l l  

develop a s i m i l a r  inequal i ty  f o r  f i n i t e  elements and use  it t o  prove 

s t a b i l i t y  and convergence. 
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3. F i n i t e  element approximation. Our approximation t o  t h e  baro t ropic  

model (2.5), (2.7)-(2.8), (2.101, (2.17)-(2.18) i s  obtained by t h e  c l a s s i c a l  

Galerkin ( o r  method of weighted r e s i d u a l s )  used i n  conjunction with f i n i t e  

elements. 

curv i l inear  a t  t h e  boundary), and t o  consider a f i n i t e  element apace on 

The first s t e p  is  t o  subdivide Q i n t o  triangles (poss ib ly  

Figure 3.1.- Disc re t i za t ion  of a .  

I n  prac t ice  a t t e n t i o n  w i l l  be r e s t r i c t e d  t o  three s p e c i f i c  f i n i t e  

elemento, although the  theory developed i n  t h e  next s ec t ion  app l i e s  much 

inore generally. ‘!he simpleet element we s h a l l  use is t h e  farnll iar l i nea r  

piecewise polynomial function, Le t t ing  -j’ z 1 - < j - < N (*I, be the  nodes 

h 
of t h e  t r i a n g l e s ,  any function v (x) i n  t h e  piecewise l i n e a r  f i n i t e  ele- 

nicrit  B ~ W C  S c u i  be wri t t en  h 

( * ) I n  t h e  sequel h > 0 w i l l  denote an average mesh spacing, and f o r  
convenience q u a n t i t i e s  associated w i t h  f i n i t e  elements w i l l  be parameter- 
ized by h ;  e.g. ,  t h e  number of nodes is denoted Nh. 
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t h a t  are worthy of note. F i r s t  t h e  boundary i n t e g r a l  can be broken i n t o  

two pa r t s ,  one over t he  inflow region r 
flow: 

( t )  and t h e  o ther  over t h e  out- i n  

rout ( t> = r - r i p )  . 
On the la t te r  ?!k > 0 ( s e e  (2 .9) ) ;  hence the  contr ibut ion t o  (2.15) from 

t h e  outflow i s  non-negative, i .e.,  
aa - 

From t h i s  we see  t h a t  t h e  t i m e  growth of t h e  p o t e n t i a l  entrosphy i s  bounded 

by t h e  i n i t i a l  data, which w e  take as 

and t h e  boundary da ta  on t h e  inflow. 

f o r  (2.1.0). 

T h i s  In  essense is t h e  r a i son  d ' e t r e  

' I ' h c  ( 1 q I m I . I  t,y (2!.16) In q u i t e  ccntrtcl t o  tho snt lre  problem, and plttye 

LL rol t? sirriilar L o  the coercivenesa inequal i ty  for e l l i p t i c  equations. In 

f a c t ,  using t h e  techniques of [16], uniqueness and continuous dependence 

on data can be r ead i ly  developed from (2.16), and In Section 3 w e  s h a l l  

develop a similar inequal i ty  fo r  f i n i t e  elements and use it t o  prove 

s t a b i l i t y  and convergence. 
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3. F in i t e  element approximation. Our approximation t o  t h e  barotropic  

model ( 2 . 5 ) ’  (2.7)-(2.8), (2.10)’ (2.17)-(2.18) i s  obtained by t h e  c l a s s i c a l  

Galerkin ( o r  method of weighted r e s idua l s )  used i n  conjunction with f i n i t e  

elements. The f irst  s t e p  i s  t o  subdivide f2 i n t o  triangles (poss ib ly  

curvi l inear  a t  t h e  boundary), and t o  consider a f i n i t e  element epace on 

t h i s  g r i d .  

Figure 3.1.- Discre t iza t ion  of a .  

I n  prac t ice  a t t e n t i o n  w i l l  be r e s t r i c t e d  t o  t h r e e  spec i f i c  f i n i t e  

elements, although t h e  theory developed i n  t h e  next sec t ion  appl ies  much 

more generally.  The simplest  element w e  shall use i a  t h e  familiar l i n e a r  

piecewise polynomial function. Let t ing z 1 < j < N (*I, be t h e  nodes -j’ - - 
h of t h e  t r i ang le s ,  any funct ion v ( E )  i n  t h e  piecewise l i n e a r  f i n i t e  ele- 

merit opacc S ctln be wr i t t en  h 

(3.1) 

(*)In t h e  sequel h > 0 w i l l  denote an average mesh spacing, and f o r  
convenience quan t i t i e s  associated with f i n i t e  elements w i l l  be parameter- 
ized by h ;  e .g . ,  t h e  number of nodes i s  denoted Nh. 
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where 0 are t h e  familiar h i l l  functions [ 7 ] s a t i s f y i n g  3 

(3.2) 

We s h a l l  a l s o  use quadratic and cubic elements. For these  spaces 

h 
-J - - any function v h can be represented by (3.1) except t h a t  z (1 < 3 < N ) 

include not only nodes but a l s o  midpoints i n  t h e  case of quadratics,and 

two equal ly  spaced points  on t h e  s ides  of t r i a n g l e s  p lus  t h e  cent ro id  

i n  the  case  of cubics ( see  Figure 3.2). 

n 

'6 A 
z1 z2 

QUADRATICS 

'3 

r i  

"7 

z9 A5 z l o  - _-- 

'1 z2 23 z4 

CUBICS 

J '  Figure 3.2.- The points z 

In  each of t h e  above cases w e  have approximations t o  t h e  stream 

I'uriction rlrld potcrlt inl  v o r t i c i t y  at  each time t > 0 of t h e  form 

(3 .4)  

We determine t h e  weights @ h ( t )  = JI h (2 t )  and s j ( t )  h = G h (gJ, t )  by t h e  
&I j' 
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Galerkin method and t h e  i n i t i a l  and boundary conditions.  

w e  have from (2 .8)  and (2.10) 

For t h e  lat ter 

( 3 . 6 )  

and fo r  i n i t i a l  conditions we t a k e  

( 3 . 7 )  

To determine t h e  remaining weights, namely 

we rewrite t h e  baro t ropic  equations i n  t h e  i n t e g r a l  form 

( 3 . 9 )  

(3.10) 

The Galerkin idea  is t o  use (3.9)-(3.10) except r e s t r i c t e d  t o  a f i n i t e  

1 

’2 Of 
(*)In keeping w i t h  standard nota t iof  we l e t  H (0) be t h e  spac 

functions v f o r  which I Iv l  1, < 00 , and Ho(Q ) be t h e  subspace of If ( S I  
of functions vanishing on r [16]. 



dimensional subspace, which i n  our s e t t i n g  i s  t h e  f i n i t e  element space 

Sh. 

boundary conditions,  hence t h e  approximate system i s  equivalent t o  

A s  usual w e  r equ i r e  t h e  t es t  functions v t o  s a t i s f y  t h e  homogeneous 

f 

Obshve t h a t  (3.11) i s  an impl ic i t  system of ordinary d i f f e r e n t i a l  

equations i n  t h e  weights 

which can be wr i t t en  

where t h e  "mass matrix" M has t h e  en t r i e s  

und *Th i s  a vector whose generic e n t r i e s  are 

The e l l i p t i c  equation (3.12) i s  equivalent t o  t h e  matrix equation 



1 4  

. 

(3.14) 

where K is t h e  " s t i f f n e s s  matrix" 

Kkh = f - ML h 

and t h e  e n t r i e s  of Lhc vector f are {f f@i  (z+ E 52). 

I n  p rac t i ce  of course it i s  necessary t o  solve both t h e  ordinary 

d i f f e r e n t i a l  equation (3.13) and t h e  matrix equation (3.14). The la t te r  

causes very few problems. 

J, 

Once t h e  dependent va r i ab le s  are removed from 

h ( i . e . ,  the  ones determined by t h e  boundary conditions (3.5)), t h e  re- 

s u l t i n g  coe f f i c i en t  matrix i s  pos i t i ve  d e f i n i t e .  

(by elimination) i n t o  LDL where L i s  t r i a n g u l a r  and D i s  diagonal. Once 

Hence it can be fac tored  

T 

t h i s  i s  done (3.14)  can be solved f o r  t h e  stream funct ion  i n  terms of t h e  

v o r t i c i t y  a t  any time t > 0 by simple backsolves. 

The time in t eg ra t ion  of (3.13) i s  a more d e l i c a t e  matter. F i r s t ,  

t h i s  system i s  st iff  -- t h e  eigenvalues of t h e  assoc ia ted  l i n e a r i z e d  system 

vary from O(1) t o  O(Nh)1'2. 
- _  __ 

Secondly, t h e  system i s  i m p l i c i t .  The mass 

matrix M i s  a sparse banded matrix, but it i s  not diagonal. Moreover, 

d i r e c t  inversion of M t o  relate t h e  time der ipa t ivea  Of Lh 

- Gh 

t o  values of 

and 11;" must be r e j ec t ed  s ince  M-I i s  t y p i c a l l y  a full matrix. 

It is perhaps appropfiatc t o  diRreG6 Alightlyl at t h i e  point eUld 

mcnt, Ion Lhtit, t h e  moat Rerious c r i t i c i s m  of t h e  f i n i t e  element Ideas baa 

been t h e  ra ther  fundamental r o l e i m p l i c i t n e s a p l a p  i n  t h e  la t ter  [12].  

Could one not  develop difference schemes of comparable accuracy which do 

not involve mqss matrices l i k e  M? This  of course i s  an important and 

se r ious  c r i t i c i sm and one which w i l l  be d e a l t  w i th  i n  t h e  f i n a l  Section 



containing numerical r e su l t s .  

The implici tness  of (3.13) can be avoided by a very simple process 

known as lumping. The key observation i s  t h a t  

* h  
unless z and z belong t o  a common t r i ang le .  I n  t h e  la t ter  case 5, is .I k - 

* h  equal to r; plus terms of order h(*) .  Thus (3.13) can be replaced by 
3 

( w i t h  e r r o r  O(h) )  which i n  matrix form becomes 

where D i s  diagonal. 

e x p l i c i t  forward t i m e  d i f fe rence  f o r  ih after a premult ipl icat ion by 

The approximation i s  then completed by using an 

- 
D-l. 

While t h i o  technique is  q u i t e  popular i n  c e r t a i n  engineering c i r c l e s  

l ' r ] ,  i t  l t l  not without oorioue d i f f i c u l t i e s .  

inatic i n  the  lumping proceso; hence it cannot be used e f f i c i e n t l y  f o r  

F i r s t ,  an e r r o r  of O(h) le 

h ighe r  order elements such as quadratics and cubics. 

are problems w i t h  lumping even f o r  l i nea r  elements. 

I n  addi t ion t h e r e  

For example consider 

o h  * h  2 
(*)For a uniform g r id  cancel la t ion occur8 Ad 5, = SJ + O(h ). 
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a one dimensional linearized advection of vorticity 

With linear elements and a uniform mesh the analog of (3.13) I s  

The associated lumped system is 

If one uses an explicit forward time difference this becomes 

5:([n+llAt) = Cj(nAt) h - (UAt/2h)[S:+l(nAt) - C:-l(nAt)l 

which is a classical unconditionally unstable difference scheme [1%1 ! 

It would appear therefore that implicitness I s  quite fundamental to the 

finite element approximations, and except for certain quite special cir- 

cumstancen lumping muet be rejected for first order hyperbolic equations 

like the vorticity transport (3.9). 

In order’ to describe some efficient time discretizations for (3.13) 

let us introduce a time step At > 0 and write 

The most obvious second order accurate scheme that can be used is the 

leap frog method 
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(3.15) 

which perhaps i s  more conveniently wr i t ten  i n  v a r i a t i o n a l  form as 

Observe t h a t  (3.15) is  i m p l i c i t ,  but t h e  scheme i s  not unconditionally 
I 

stable.  In  f a c t ,  t h e  usual ( i n t u i t i v e )  s t a b i l i t y  ana lys i s  [la gives 

(3.16) - "& < 1 
ho - 

as t h e  Courant condition, where h i s  t h e  minimum mesh length  and 
0 

If t h e  inflow region r 
w i l l  not depend on time. (*I 

t a t i o n  t h e  (neceuaar i ly  pos i t i ve  d e f i n i t e )  mass matrix can be fac tored  

into LUL arid hence (3.15) can be marched i n  time by simple backeolves. 

( t )  i s  independent of time t ,  then  t h e  mass matrix i n  

This means t h a t  at  t h e  start of t h e  compu- 

T' 

\JnfortuncLtely, i n  t h e  M.O.D.E.  experiments t h e  inflow w i l l  vary 

w i t h  t ime, o f t en  qu i t e  d r a s t i c a l i y .  

have t o  be re fac tored  at each time step.  

This means t h a t  t h e  m e 8  matrix w i l l  

Moreover, t h e  g r i d s  t y p i c a l l y  

w i l l  not be uniform and t h e  minimum mesh length  ho could be q u i t e  small. 

(*)The coe f f i c i en t s  of M a r e  independent of t i m e  t but t h e  s i z e  of 
M i s  NXN where N = N(t) i s  t h e  number of  nodes z i n  3 and on t h e  out- -J flow rout (t 1. 
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In t h i o  case t h e  Courant condition (3.16) requi res  a smaller time 

in te rva l  A t ,  and hence more time s t eps ,  

t h e  fac tor iza t ion  at each time s t e p  t h i s  would appear t o  ind ica t e  t h a t  

(3 .15)  i s  not very e f f i c i e n t  f o r  such cases. 

a l te rna t ive  i s  t h e  impl ic i t  scheme 

Because of t h e  expense of 

A much more a t t r a c t i v e  

whose l i nea r i za t ion  i s  unconditionally s t ab le .  

As w i l l  be shown i n  t h e  next sec t ion ,  t h e  Galerkin "semi-discrete" 

system (3.11)-(3.12) produces approximations t o  t h e  v e l o c i t i e s  

k-1) t o  order O(h 

approximations a r e  made t o  t h e  v o r t i c i t y .  Thus t h e  second order schemes 

(3.15)-(3.16) would seem t o  be appropriate  f o r  t h e  l i n e a r  and quadratic 

elements but not for  cubics where t h i r d  order  s p a t i a l  approximations are 

obt,iLtncd. An w11J tJC reported I n  the  l a o t  ecc t lon ,  however, we found 

( 3 . 1 ; ) )  01. (3.16) yul  tat.: uuitable f o r  cubics provided time extrapolation is 

used. 

if piecewise polynomials of degree k-1 are used. Similar  



4. S t a b i l i t y  and converfcence. The goa l  of t h i s  s ec t ion  is  t o  

prove t h a t  t h e  semi-discrete f i n i t e  element system (3.11)-(3.12) i s  stable 

i n  t h e  sense t h a t  

are bounded by the i n i t i a l  and boundary da ta .  In  addi t ion ,  t h e  order of 

convergence of' the  approximate v o r t i c i t y  Ch and stream funct ion  Jlh i s  

e:; trtblistred. 

The proof of s t a b i l i t y  cen te r s  around a ca l cu la t ion  s i m i l a r  t o  one 

which produced (2.15). We start by wr i t ing  

where 

'l'hua, c:i vaniohcu on the inflow rin(t) and $% vanishes everywhere on 

Ltie boundtiry 1'. Because of the former we can rep lace  

(3.11). This  g ives  

with Cff i n  J 

(4.3) 

The l e f t  hand s i d e  of ( 4 . 3 )  can be wr i t t en  
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I -  

~ 

h henot? after div id ing  by I I CJ1( , t ) I Io, (4.3) becomes a d i f f e r e n t i a l  

r e l a t i o n  descr ib ing  t h e  time growth of vortfed;ty, We want t o  bound t h e  

r i g h t  hand s i d e  by known q u a n t i t i e s  which i n  t h i s  s e t t i n g  are t h e  boundary 

data cy, +: and the i n i t i a l  data .  The first term on t h e  r i g h t  hand s i d e  

causes no d i f f i c u l t i e s ,  and we  use t h e  Schwartz inequa l i ty  t o  bound it by 

h 

Another appl ica t ion  of' t h e  Schwartz inequa l i ty  permits us t o  bound t h e  

second term by 

where 

h The approximate stream funct ion qh and v o r t i c i t y  

cl 1 I ~ i l , J c  uyittcm ( 3 .  12). 

r; a r e  r e l a t e d  through the 

Thus etandard ani.InrrAoa, / ' / I  V,lVe? 

( 4 . 4 )  

where C i = 1,2,3, a r e  constants  independent of h > 0. 
i' 

The las t  expression i n  (4.3) i s  t h e  more i n t e r e s t i n g  one. On t h e  

surface it appears t o  be troublesome s ince  J ( C h , ,  Jlh) 

s p a t i a l  der iva t ives  of 5 

involves f i rs t  

h 
$1 ' 
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It is at this point, however, where the inflow condition , 3 . 6 )  plays a 

central role. 

(2.14) and leading to (2.16) except in this case with functions in the 

space S . We recall that the term in question is 

In particular, we duplicate the calculation starting with 

h 

An integration by parts shows that this term is equal to 

But $ vanishes on the inflow and the tangential derivative of the 

stream function (i.e., the normal velocity) ia positive on the outflow if 

h is sufficiently small. Hence 

(4.5) 

Combining the above with ( 4 . 3 )  gives 

where 
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An integrat ion of' t h e  d i f f e r e n t i a l  inequal i ty  04.5)  Kives 

This expression with ( 4 . 4 )  cons i s t s  of our statement of s t a b i l i t y .  

We now consider t h e  order  of accuracy of t h e  f i n i t e  element approxi- 

h mations. In  p a r t i c u l a r  suppose S cons i s t s  of piecewise polynomials of 

degree k-1; t hus  k=2 f o r  linear elements; k=3 f o r  quadrat ics  and k=4 for 

cubics.  Let 

be t h e  in te rpolan ts  of 5, $ respec t ive ly .  Then 

f o r  r = O ,  1 where 
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Since ih i s  "close to'' 5 it i s  "almost" a s o l u t i o n  of t h e  vorticity 

t r anspor t  equation (3.9) .  More prec ise ly ,  f o r  any v E L2( 52 ) 

h -h h 
' l 'hus us e = 5 - 5 vnnishes on r (t), (3.11) can be replaced with i n  

We rewr i t e  t h i s  r e l a t i o n  as 

The c a l c u l a t i o n  now resembles t h e  s t a b i l i t y  es t imate  with t h e  dec is ive  

s t e p  being t h e  observat ion t h a t  

But e l l i p t i c  theory [ 7 ]  gives 
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hence 

Defining the approximate ve loc i ty  by 

w2 see t h a t  t h e  f i n i t e  element system (3.11)-( 3.12) produces O( hk-’) 

approximations t o  t h e  v e l o c i t i e s  u, v, and a s i m i l a r  order  of approxi- 

mation t o  the v o r t i c i t y  5 . 

(” In  prac t ice  difference quot ien ts  of JI h are preferab le  i f  
uniform meshes are used ( s e e  [8]). 



5 .  Numerical results - In this section we shall report some pre- 

tjmiriury nnd extremely elementary numerical experiments. As mentioned in 

the introduction, the calculations based on the M.O.D.E. data will be done 

with a three dimension quasi-geostrophic model. This work will be done in 

conjunction with J. Hirsh and A.  R. Robinson, and will be reported else- 

where. 

estimates established in Section 4, and in addition give some simple indi- 

cation o f '  how the advection of spikes is approximated by finite elements. 

Here our basic goal will be to confirm the order of accuracy 

O u r  first experiment treats u neutral Rossby wave [l7] 

$ = -IJy + A sin [k (x - Ct + ClY)] 

in a square region R = [O,L]x[O,L]. For this to be a solution of the 

barotropic equation the phase speed c must' satisfy 

Two finite element spaces, namely quadratics and cubics, are con- 

::idvrcd a1onE with the first order windward difference scheme [ 181. 

1Br -Oi * r .  I,(I k ( . c . l ~  I , t i c .  rmouril, r ~ f '  work roughly c*onUtiirit, wc' uned a uniform mesh 

0 1 '  t i  l , /h  r i r i i l  I,/!! l*or Lhr-  dil'l'crt~ric.c* :whwnP wlLh h 0 1,/2 and 

1 1  - I , / ) I  1 * 0 r -  I , I I ( ~  l ' i r i i ~ ( *  t * I c a m c > r i t , : ? .  'I'he rchsult,:l t i rv  y;Ivc.ri  i n  ' I ' i h b I f a  I t'or 

: i t ~ l ~ ~ ~ ~ t , c ~ I  points i n  the region R. The time integration WRS done f o r  the 

t'initc element with the implicit scheme discussed in Section 3. 

s t e p s  7 satisfied the Courant condition 

In 

The time 
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I'OTN?' 

Upwind scheme h = 1/)+ 

h = 1/8 

Quadratics h = 1 / 2  

h = 1/4 

Cubics h = 1/? 

h = 1/4 

(5.1) 

(L/4, L/2) (L/2, L/2) (3L/4, L/2) 

20% 20% 6% 
8% 10% 6% 

8% 15% 18% 
3% 4% 5% 

3% 3% 4% 
0.3% 0.4% 1% 

and one extrapolation w a s  used f o r  t h e  cubics per time s tep .  

e x p l i c i t  upwind scheme one ha l f  of the  value of (5.1) w a s  used. 

For the 

PO I NT 

1J l )wind  scheme h = L / ) I  

tl  = I / n  

Quttdrrtt, i c  s h = L / ?  

h = 1 / 4  

Cubics h = 1/2  

h = 1/11 

TABLE I 

~~ ~~~ 

W 4 ,  r J 2 )  

15% 
10% 

18% 
5% 

2% 

0.1% 

Neutral Rossby wave 

U = 5 ,  A = 100, L = 100, k = .075, f3 = . O O 1 2 5  

37% 
21% 

32% 

6% 

10% 

2% 

I Percent e r r o r  i n  v - - 2  
ax 

4 0% 

?3% 

8% 
2% 

5% 
0.6% 

I Percent e r r o r  i n  v o r t i c i t y  
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The orders  of accuracy predicted in  Sect ion 4 can i n  essence be seen 

from Table I. The s l i g h t  va r i a t ion  i n  the  rate i s  due t o  t h e  fact  t h a t  t h e  

theo ry  i n  Section 4 w a s  developed f o r  convergence while Table I refers 

t o  pointwise convergence. 

higher order  elements ( i . e . ,  cubic and quadratic) are s t r i k i w l y  more e f f i c i e n t .  

The approximations obtained from l inear  elements are almost i d e n t i c a l  t o  

t , h o n c ~  listed for t h e  upwind scheme and hence t h e  former w a s  not  included. 

L2 

Observe also t h a t  f o r  t h i s  simple Rossby wave t h e  

T n  our second expr imen t  we consider R stream funct ion of the form 

w i t , h  110 & p l a n e  ef'f'rr.1, ( j . e . ,  @ = 0 

T h e  function f i s  chosen so t h a t  the v o r t i c i t y  

and a const,nnt Coriolin parameter.) 

2 
5 = k A f" [k(x - U t ) ]  

is a spike:  

giviriy-: us the  p r n l ' i l e  shown i n  f igure 5-1. In  addi t ion  w e  use 
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I x + -  
2 X x + r ;  

Figure 5-1.- Vorticity spike. 

' l ' t i ( >  :::LITIC Lime in t , ce rR t iona  as. in the first experiment, are used w i t h  

t , t \ c L  L i m e  step I s:tt,isfying 

To keep the work roughly the same we used one half of the value of T 

f 'or I . he  P X ~ I  i o i  t, u p w i r r d  scheme. The profiles for C h  and vh are 

: ; ~ l l J W l l  i i i  l l ' i ~ r , i ~ t * i *  ' , . ; I .  



T i m e  = 0.12 Time = 0.2 

Q u a d r a t i c s 7  f Juadra t ics  1 r f i a c t  

scheme 

l I I l I 1 I l I ~  

I . 3  1.0 

Time  = 0.28 

Exact 7 

0 - 7  1 .0  

I l l l l I l l l (  

$ 5  1.0 

Time = 0.44 

Quadratics 

Exactl 

Upwind 
scheme 

r l l l r r l l l ~  
- 5  1.0 

Time = 0.12- 
/ 

Upwind /,-. 

Quadratj.cn 

Time = 0.2 

- Exact 

l r I l l 1 I I l l  
- 5  1.0 

Time = 0.44 

r I 1 r I r I r l 1  

0 - 5  1.0 

h 
Figure 5.2.- P r o f i l e s  f o r  Ch and v ( y  = 0.5). 



I t  can be observed from Figure 5-2 t h a t  t h e  f i n i t e  element schemes 

h w e  o s c i l l a t i o n s  downstream from t h e  spike while no such phenomena exists 

f o r  t h e  upwind d i f fe rence  scheme. This is due t o  t h e  numerical viscositv 

i n  t h e  la t ter ;  i . e . ,  upwind d i f fe renc ing  i s  cons is ten t  with t h e  d issapa t ive  

operat  or 

(5. ? )  

1111 t,( i l,caTm:: of ordr.r O(h2) + (At ) . The numerical v i scos i ty  coe f f i c i en t  v 

i:: 01’  or0cr O ( h )  + O ( A I , ) ,  ( see  r181). The “numerical f r i c t i o n “  dmperia 

o s c i l l a t i o n s ,  but a lso qu i t e  unfortunately t h e  sp ike  i t s e l f !  

e f f ec t  can be r ead i ly  seen from t h e  v o r t i c i t y  p r o f i l e s .  

( ’> 
The “smearing” 

The f i n i t e  element schemes (with t h e  t i m e  approximation (3.16)), on 

t h e  o ther  hand, are conservative i n  t h e  sense t h a t  t h e  numerical v i scos i ty  

v i s  zero. This i s  e a s i l y  v e r i f i e d  by Taylor expansion, which due t o  t h e i r  

length w i l l  not be produced here. 

7 r 1  moct problemo, and i n  pa r t i cu la r  t h e  MODE ca lcu la t ions ,  t h e  o s c i l l a -  

1. i o r i : ;  ( I ,ypir . r i lJy wi t ~ i  II IlwiOd of u nieuti 1ctngt.h) a r e  f a r  l e e s  troublceomc 

t h t ~ ~ i  riiricw-ing. F i r s t ,  of‘ a l l ,  they are of t h e  r i g h t  order (e .g . ,  O(h ) fo r  

quadra t ics ) ,  and secondly they are e a s i l y  detected i n  a given ca lcu la t ion .  

2 

This has i n t e r e s t i n g  implicat ions f o r  t h e  point  r a i sed  i n  Section 3 

concerning the  fundamental r o l e  played by impl ic i tness  i n  t h e  f i n i t e  ele- 

ment method. The f a c t  t h a t  t h e  inflow region changes s i g n i f i c a n t l y  i n  



tirne--as it does even f o r  t h e  simple examples considered i n  t h i s  Section-- 

e l iminates  t h e  r e d l y  a t t r a c t i v e  higher order,  e x p l i c i t ,  and conservative 

d i f fe rence  schemes (e.g. , t h e  fou r th  order scheme of Arakawa [IS, p. 1053). 

If one desires an e x p l i c i t  approximation some form of "windward" differenc-  

ing a t  t h e  outflbw seems inev i t ab le ,  and t h e  l a t t e r  i s  inherent ly  non- 

conservative (and inaccura te ) .  

for t hese  types of problems, a f a c t  which augers wel l  f o r  t h e  fu tu re  appl i -  

cat ion of t h e  f i n i t e  elements ideas  i n  t h i s  type of s e t t i n g .  

I n  other  words, impl ic i tness  may be essent ia l  

6. Conclusions. A theory is developed which shows t h a t  t h e  f i n i t e  

r . 1  cmerit method produces cteblts and accurate approximations t o  flow problems. 

While Ll le s e t t i n g  f o r  the l a t t e r  w a s  t he  two dimensional stream function- 

v o r t i c i t y  formulation, t h e  t o o l s  of ana lys i s  used are r a t h e r  general ,  and 

one can be assured t h a t  t h e  method appropriately implemented w i l l  produce 

r e l i a b l e  approximation. 

The b i g  i s sue  concerning t h e  use of f i n i t e  elements centers  t he re fo re  

on e f f ic iency .  A s  t h e  ana lys i s  and examples i n  t h i s  paper show, impl ic i t -  

I I ~ S G  is  q u i t e  fundmerlttil t o  the method. 

wti i ( . t i  i ri  cai;t'ric t; I J J Y J ~ U C ~ .  expl J c it upproximat ions  can be dangerously un- 

::Lttbl(L i II the Nuviw-Stokec s e t t i n g ,  and therefore  must be re jec ted  except 

l'or v e r y  specirtl circumstances. The question is whether t h e  impl ic i tness  

i s  r e a l l y  necessary. 

Modifications such as "lumping" 

For problems w i t h  simple geometries (e .  g. , rectangular  polygons) 

where uniform g r ids  are s u f f i c i e n t ,  t he  answer i s  c l e a r l y  negative. 

r u t h e r  s t r i k i n g  example i s  obtained by comparing t h e  e x p l i c i t  Arakawa 

A 

, 
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1 1  i I ' I ' r , r . r - r i c . f .  r,c.hwnc wi 1.h t h e  ncheme ottninpd f'rom cubic finite elements. 

' l ' t l f .  c :  i r r t r )  1 i i I,y of' 1,fic. l'ormcar r-ornpnrcyj to Lhe latter is considerable. 

'1'he.y b C J t , k l  produc:e third order approximations to the velocities, yet a 

very conservative and ad hoc guess would be that the cubics would re- 

q u i r e  at lcvtst one and possibly two orders of magnitude more work and 

computer storage. 

T h i s  does not mean, however, that finite elements will be useless 

I'or I ' l ow problems. Indeed, it is now increasingly clear that suitably 

I'ormulateci h i g h e r  order methods -- either finite differences o r  

! ' init ,( .  elcmf~rit:; -- can be considerably more efficient than first and 

: : t v - o r i f I  ort1f.r mcthot ln  even f'or complicated- engineering problems. (see e.g. 

[ ' (  1 ,  [ 1 I 1 ,  [ I?]). 

exiunples of t h e  previous section. The most striking property of the 

finite element method i s  the tase with which higher order approximations 

can be derived even in the presence of irregular arids and irrewlar 

boundaries. This is in striking contrast to explicit higher order 

f'iriit,c dif'l'ercnrc s c h e m e s ,  and f o r  problems such as the limited region 

0 r . c - ' i r 1  r r i o i l f s l  w h c \ r * c *  r ' i  t.hc.r i rrr,u,ulrir R r i c t s  or boundnricn are essential, 

W I -  ( ' ( . ( > I  1 ~ I I ,  I ' i r l i  I,(, t . l r ~ ~ n t  idtart:; (Inn play a oignif'icmt role. 

This is a lso  clearly illustrated in very simple 
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